Improving gene signatures by the identification of differentially expressed modules in molecular networks : a local-score approach.

Marine Jeanmougin

JOBIM 2012, Rennes - July 4th, 2012

Outline

Introduction

- Microarray experiments
- Identification of molecular signatures
- Motivations

DIsease Associated Module Selection (DiAMS)

- Global approach
- Local-score statistic for module ranking
- Evaluation process

3 Results and application

- Quantitative results
- Application to Estrogen Receptor status in breast cancer

Objectives of microarray experiments

Expression level of thousands of transcripts

Biological purpose

- Signature: genes involved in a phenotype of interest
- Medical applications: diagnosis, prognosis, treatment efficacy

Model

 $X_{ia}^{(c)}$:expression level of the *i*th sample for gene g under condition c such as:

$$\mathbb{E}(X_{ig}^{(c)}) = \mu_g^{(c)}$$

Under the assumption of homoscedasticity between conditions:

$$\mathbb{V}(X_{ig}^{(c)}) = (\sigma_g)^2$$

Hypothesis testing strategy

For two conditions, the null hypothesis to test comes down to

$$\begin{cases} H_{0,g}: & \mu_g^{(1)} = \mu_g^{(2)} \\ H_{1,g}: & \mu_g^{(1)} \neq \mu_g^{(2)} \end{cases}$$

⊳ Classical approach: *t*-statistic

Issues for gene-specific variance estimation

Model

 $X_{ia}^{(c)}$:expression level of the *i*th sample for gene g under condition c such as:

$$\mathbb{E}(X_{ig}^{(c)}) = \mu_g^{(c)}$$

Under the assumption of homoscedasticity between conditions:

$$\mathbb{V}(X_{ig}^{(c)}) = (\sigma_g)^2$$

Hypothesis testing strategy

For two conditions, the null hypothesis to test comes down to

$$\begin{cases} H_{0,g}: & \mu_g^{(1)} = \mu_g^{(2)} \\ H_{1,g}: & \mu_g^{(1)} \neq \mu_g^{(2)} \end{cases}$$

▷ Classical approach: *t*-statistic

Issues for gene-specific variance estimation

Model

 $X_{ia}^{(c)}$:expression level of the *i*th sample for gene g under condition c such as:

$$\mathbb{E}(X_{ig}^{(c)}) = \mu_g^{(c)}$$

Under the assumption of homoscedasticity between conditions:

$$\mathbb{V}(X_{ig}^{(c)}) = (\sigma_g)^2$$

Hypothesis testing strategy

For two conditions, the null hypothesis to test comes down to

$$\begin{cases} H_{0,g}: & \mu_g^{(1)} = \mu_g^{(2)} \\ H_{1,g}: & \mu_g^{(1)} \neq \mu_g^{(2)} \end{cases}$$

▷ Classical approach: *t*-statistic

Issues for gene-specific variance estimation

Limma: a shrinkage approach (Smyth, 2004)

- Jeanmougin et al. 2010, PLoS ONE

Empirical Bayes variance estimate

$$S_g^{ ext{limma}} = rac{ extsf{d}_0 S_0^2 + extsf{d}_g S_g^2}{ extsf{d}_0 + extsf{d}_g},$$

- S₀²: prior variance from the scale-inverse-chi-square distribution → fixed with an empirical Bayes approach
- S_g^2 : usual unbiased estimator of the variance $(\sigma_g)^2$
- ► d₀, d_g: residual degrees of freedom for S²₀ and for the linear model for gene g

Test statistic:

$$t_{g}^{\text{limma}} = \frac{\bar{x}_{.g}^{(1)} - \bar{x}_{.g}^{(2)}}{S_{g}^{\text{limma}} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}.$$

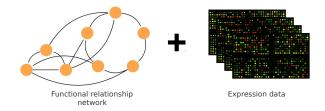
Motivations

Limitations of classical approaches

- Low reproducibility
 - Ein-Dor *et al.* 2005, Outcome signature genes in breast cancer: is there a unique set? *Bioinformatics*
- Difficulty to achieve a clear biological interpretation

Improving gene signatures

- Genes causing the same phenotype are likely to interact together
 - Gandhi, T.K. et al. 2006, Nature Genetics
- Identification of genes that are functionally related (i.e. modules)



Outline

- Microarray experiments
- Identification of molecular signatures
- Motivations

Disease Associated Module Selection (DiAMS)

- Global approach
- Local-score statistic for module ranking
- Evaluation process

- Quantitative results
- Application to Estrogen Receptor status in breast cancer

Goal

Select functional modules presenting unexpected accumulation of high-scoring genes

Input parameters

- PPI network (strong manifestation of functional relations)
- Gene scores from limma statistic

DiAMS: a 3-step process

- Preprocessing
- 2 Local-score approach for module ranking
- Selection of significant modules

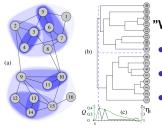
Global approach Step 1 - Preprocessing

High-dimensional network

Impossibility of exploring the huge space of possible gene subnetworks

Hierarchical clustering

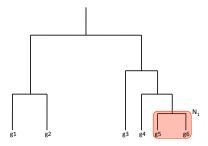
- Captures much information about network topology
- Enables to go easily through the structure
- Screen the entire network without constraints on module sizes



"Walktrap" approach

- Random walks strategy
- Distance (similarity measure of vertices)
- Ward's criterion

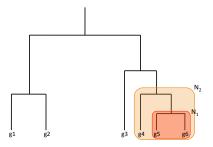
Pons and Latapy 2006 JGAA



Iterative module ranking

- In Score each module N_k (by summing gene scores)
- Identify the highest scoring module (local-score statistic)
- 💿 Remove it

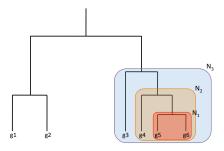
Repeat setps 1) to 3) until all disjoint modules have been enumerated



Iterative module ranking

- Score each module N_k (by summing gene scores)
- Identify the highest scoring module (local-score statistic)
- 💿 Remove it

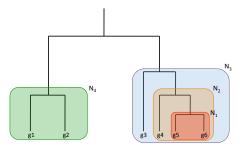
🕘 Repeat setps 1) to 3) until all disjoint modules have been enumerated



Iterative module ranking

- Score each module N_k (by summing gene scores)
- Identify the highest scoring module (local-score statistic)
- 💿 Remove it

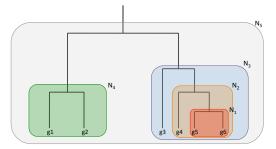
Repeat setps 1) to 3) until all disjoint modules have been enumerated



Iterative module ranking

- In Score each module N_k (by summing gene scores)
- Identify the highest scoring module (local-score statistic)
- 💿 Remove it

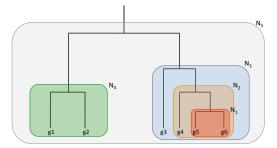
🕘 Repeat setps 1) to 3) until all disjoint modules have been enumerated



Iterative module ranking

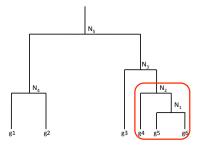
- In Score each module N_k (by summing gene scores)
- Identify the highest scoring module (local-score statistic)
- 💿 Remove it

🕘 Repeat setps 1) to 3) until all disjoint modules have been enumerated



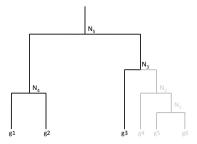
Iterative module ranking

- **1** Score each module N_k (by summing gene scores)
- Identify the highest scoring module (local-score statistic)
- 3 Remove it
- Provide the set of the set of



Iterative module ranking

- **1** Score each module N_k (by summing gene scores)
- 2 Identify the highest scoring module (local-score statistic)
- 3 Remove it
- Pepeat setps 1) to 3) until all disjoint modules have been enumerated



Iterative module ranking

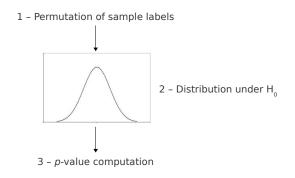
- **1** Score each module N_k (by summing gene scores)
- 2 Identify the highest scoring module (local-score statistic)
- 3 Remove it
- Provide the set of the set of

Global approach Step 3 - Selection of significant modules

Goal

Assess the global significance of each module

Monte-Carlo approach



 \rightsquigarrow Selection of modules at 5% FDR level.

Outline

Introduction

- Microarray experiments
- Identification of molecular signatures
- Motivations

DIsease Associated Module Selection (DiAMS)

- Global approach
- Local-score statistic for module ranking
- Evaluation process

Results and application

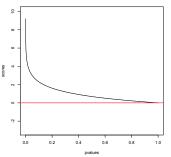
- Quantitative results
- Application to Estrogen Receptor status in breast cancer

Individual gene scoring

The gene score is given by:

$$\nu_g = -\log(p_g) - \delta,$$

- p_g : gene *p*-value from limma,
- δ , a constant such as $\mathbb{E}(\nu_g) \leq 0$.



Distribution of scores in function of p-values

Local-score statistic

Definition: value of the highest-scoring module.

Given \mathcal{H} , a hierarchical community structure, the local-score statistic is defined as:

$$L = \max_{H \subseteq \mathcal{H}} \left(\sum_{g \in H} \nu_g \right)$$

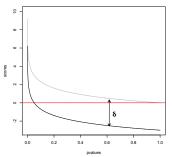
such as H is a subtree of \mathcal{H} .

Individual gene scoring

The gene score is given by:

$$\nu_g = -\log(p_g) - \delta,$$

- p_g : gene *p*-value from limma,
- δ , a constant such as $\mathbb{E}(\nu_g) \leq 0$.



Distribution of scores in function of p-values

Local-score statistic

Definition: value of the highest-scoring module.

Given \mathcal{H} , a hierarchical community structure, the local-score statistic is defined as:

$$L = \max_{H \subseteq \mathcal{H}} \left(\sum_{g \in H} \nu_g \right)$$

such as H is a subtree of \mathcal{H} .

Outline

Introduction

- Microarray experiments
- Identification of molecular signatures
- Motivations

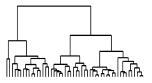
DIsease Associated Module Selection (DiAMS)

- Global approach
- Local-score statistic for module ranking
- Evaluation process

Results and application

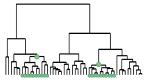
- Quantitative results
- Application to Estrogen Receptor status in breast cancer

Power and false-postive rate study

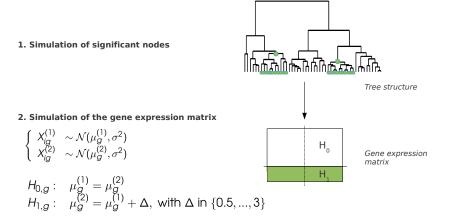


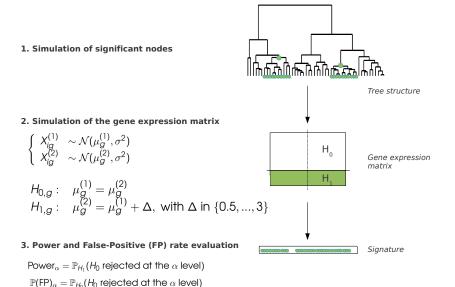
Tree structure

Power and false-postive rate study



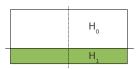
Tree structure





Reproducibility

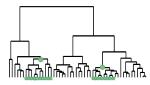
Tree structure



Gene expression matrix

Signature

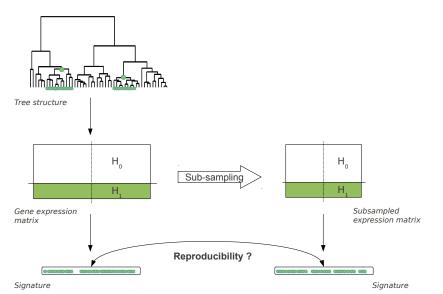
Reproducibility



Gene expression matrix Subsampled expression matrix

Signature

Reproducibility



16

Outline

Introduction

- Microarray experiments
- Identification of molecular signatures
- Motivations

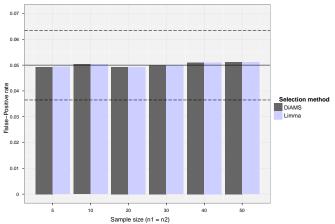
DIsease Associated Module Selection (DiAMS)

- Global approach
- Local-score statistic for module ranking
- Evaluation process

Results and application

- Quantitative results
- Application to Estrogen Receptor status in breast cancer

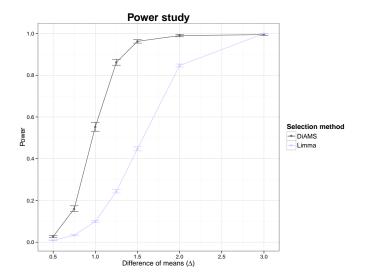
Quantitative results



False-Positive rate study

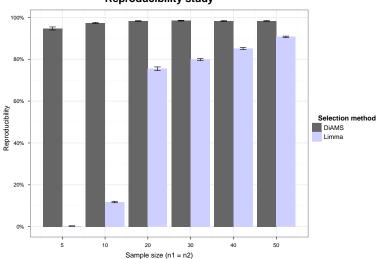
False-positive rate study - Estimated false-positive rate over the 1,000 simulations. Plain black line: the 5% level. The dashed black lines: 95% confidence intervals.

Quantitative results



Power study - The mean of power values over the 1,000 simulations are calculated at a 0.05 FDR level.

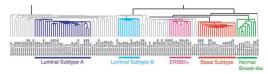
Quantitative results



Reproducibility study

Breast cancer in a few words

An heterogeneous disease (5 subtypes)



 Presence (ER+)/absence (ER-) of Estrogen Receptors: an essential parameter of tumor characterization.

Data

Affymetrix U133-Plus2.0 arrays:

- 537 patients (446 ER⁺ vs. 91 ER⁻)
- ► 54,675 probes

Topological data

- PPI network from HPRD and String:
 - 13,611 proteins
 - \blacktriangleright ~ 600,000 interactions

Application

Results

- 27 221 initial modules
- ▶ 14 significant modules (FDR 1%)
- 159 genes

Interpretation

Module	Size	Molecular / cellular function
1	38	Amino-acid metabolism
2	1 (GATA3)	Strong association with ER status (Voduc et al. 2008)
3	35	Breast cancer regulation by Stathmin1* (*oncoprotein which takes part in the preventive progression of ER ⁺ tumors)
4	1 (AGR3)	Involved in ER-responsive breast tumors (Fletcher et al. 2002)
5	7	PI3K/AKT signaling (cell death and cellular growth) Aryl Hydrocarbon Receptor signaling (*AHR represses ER)

Summary

- DiAMS: local-score approach for the selection of disease associated modules of genes
- Proved quantitative results on:
 - power gains,
 - reproducibility improvements,
 - in comparison to the classical approach.
- Limitation: coverage and quality of PPI databases

Perspectives

- Investigate the predictive performance of DiAMS
- Assess the reproducibility on real datasets.

Acknowledgements

Statistic & Genome Laboratory

Christophe Ambroise

Michèle, Carène, Claudine, Catherine, Camille, Etienne, Pierre, Gilles, Cecile, Maurice, Marie-Luce, Anne-Sophie, Cyril, Justin, Van-Hanh, Yolande, Sarah, Marius, Bernard et Julien.

Jan, Caroline, Fabrice, Mickaël, Matthieu, Jonas, Sory.

Pharnext

Mickaël Guedj

Serguei Nabirotchkin

Ilya Chumakov