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Microarray experiments

Objectives of microarray experiments

Expression level of thousands of transcripts

differential analysis Signature of genes

Biological purpose

I Signature: genes involved in a phenotype of interest

I Medical applications: diagnosis, prognosis, treatment efficacy
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Identification of molecular signatures
Differential analysis

Model

X (c)
ig :expression level of the ith sample for gene g under condition c such as:

E(X (c)
ig ) = µ

(c)
g

Under the assumption of homoscedasticity between conditions:

V(X (c)
ig ) = (σg)2

Hypothesis testing strategy

For two conditions, the null hypothesis to test comes down to{
H0,g : µ

(1)
g = µ

(2)
g

H1,g : µ
(1)
g 6= µ

(2)
g

B Classical approach: t-statistic

Issues for gene-specific variance estimation
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Identification of molecular signatures
Differential analysis

Limma: a shrinkage approach (Smyth, 2004)

Jeanmougin et al. 2010, PLoS ONE

Empirical Bayes variance estimate

S limma
g =

d0S2
0 + dgS2

g

d0 + dg
,

I S2
0 : prior variance from the scale-inverse-chi-square distribution
 fixed with an empirical Bayes approach

I S2
g: usual unbiased estimator of the variance (σg)2

I d0, dg: residual degrees of freedom for S2
0 and for the linear model for

gene g

Test statistic:

t limma
g =

x̄ (1)
·g − x̄ (2)

·g

S limma
g

√
1

n1
+ 1

n2

.
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Motivations

Limitations of classical approaches

I Low reproducibility

Ein-Dor et al. 2005, Outcome signature genes in breast cancer: is there a
unique set? Bioinformatics

I Difficulty to achieve a clear biological interpretation

Improving gene signatures

I Genes causing the same phenotype are likely to interact together

Gandhi, T.K. et al. 2006, Nature Genetics

I Identification of genes that are functionally related (i.e. modules)

  

Functional relationship 
network

Expression data
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Global approach

Goal

Select functional modules presenting unexpected
accumulation of high-scoring genes

Input parameters

I PPI network (strong manifestation of functional relations)

I Gene scores from limma statistic

DiAMS: a 3-step process

1 Preprocessing
2 Local-score approach for module ranking
3 Selection of significant modules
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Global approach
Step 1 - Preprocessing

High-dimensional network

I Impossibility of exploring the huge space of possible gene subnetworks

Hierarchical clustering

I Captures much information about network topology

I Enables to go easily through the structure

I Screen the entire network without constraints on module sizes

”Walktrap” approach

• Random walks strategy

• Distance (similarity measure of vertices)

• Ward’s criterion

Pons and Latapy 2006 JGAA
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Global approach
Step 2 - Local-score approach for module ranking

g1  g2  g3  g4  g5  g6 

N1 

Iterative module ranking

1 Score each module Nk (by summing gene scores)

2 Identify the highest scoring module (local-score statistic)

3 Remove it

4 Repeat setps 1) to 3) until all disjoint modules have been enumerated
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Global approach
Step 3 - Selection of significant modules

Goal

Assess the global significance of each module

Monte-Carlo approach

  

1 – Permutation of sample labels

2 – Distribution under H
0

3 – p-value computation

 Selection of modules at 5% FDR level.
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Module scoring

Individual gene scoring

The gene score is given by:

νg = − log(pg)− δ,

I pg: gene p-value from limma,

I δ, a constant such as E (νg) ≤ 0.
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Local-score statistic

Definition: value of the highest-scoring module.

Given H, a hierarchical community structure, the local-score statistic is defined
as:

L = max
H⊆H

∑
g∈H

νg

 ,

such as H is a subtree of H. 13
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Evaluation process

Power and false-postive rate study

  

Tree structure
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Evaluation process

Power and false-postive rate study

  

1. Simulation of significant nodes 

2. Simulation of the gene expression matrix 

3. Power and False-Positive (FP) rate evaluation

H
0

H
1

Signature

Gene expression 
matrix

Tree structure
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Evaluation process

Reproducibility
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Quantitative results

False−Positive rate study

Sample size (n1 = n2)

Fa
ls

e−
P

os
iti

ve
 r

at
e

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

5 10 20 30 40 50

Selection method
DiAMS
Limma

False-positive rate study - Estimated false-positive rate over the 1,000 simulations.
Plain black line: the 5% level. The dashed black lines: 95% confidence intervals.
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Quantitative results
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Power study

Power study - The mean of power values over the 1,000 simulations are
calculated at a 0.05 FDR level. 19



Quantitative results

Reproducibility study

Sample size (n1 = n2)
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Application

Breast cancer in a few words

I An heterogeneous disease (5 subtypes)

I Presence (ER+)/absence (ER-) of Estrogen Receptors: an essential
parameter of tumor characterization.

Data

Affymetrix U133-Plus2.0 arrays:
I 537 patients (446 ER+ vs. 91 ER−)

I 54,675 probes

Topological data
PPI network from HPRD and String:

I 13,611 proteins

I ∼ 600, 000 interactions
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Application

Results

I 27 221 initial modules

I 14 significant modules (FDR 1%)

I 159 genes

Interpretation

  

Module Size Molecular  / cellular function

1 38 Amino-acid metabolism

2 1 
(GATA3) Strong association with ER status (Voduc et al. 2008)

3 35
Breast cancer regulation by Stathmin1*
(*oncoprotein which takes part in the preventive progression of ER+ 
tumors)

4 1
(AGR3) Involved in ER-responsive breast tumors (Fletcher et al. 2002)

5 7 PI3K/AKT signaling (cell death and cellular growth)
Aryl Hydrocarbon Receptor signaling (*AHR represses ER)
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Discussion

Summary

I DiAMS: local-score approach for the selection of disease associated
modules of genes

I Proved quantitative results on:

• power gains,
• reproducibility improvements,

in comparison to the classical approach.

I Limitation: coverage and quality of PPI databases

Perspectives

I Investigate the predictive performance of DiAMS

I Assess the reproducibility on real datasets.
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